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Big Picture
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Problem:

e Overparameterized networks can have high accuracy on
average on in-domain test data, but fail on atypical examples.

How to solve:

e Use distributionally robust optimization (DRO) to account for
worst-case training loss over certain groups.
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Spurious Correlations

One reason for failure:

e The network learns spurious correlations that hold on average
but not in certain examples.

‘Waterbirds

CelebA

MultiNLI

Common training examples

y: waterbird
a: water
background

y: blond hair Jr—

a: female

y: contradiction
a: has negation
(P) The economy
could be still better.
(H) The economy has
never been better.

y: landbird
a: land A
background |4 3 @

y: dark hair ~ _vig;
a: male

y: entailment
a: no negation

(P) Read for Slate's take
on Jackson's findings.
(H) Slate had an opinion
on Jackson's findings.

Test examples

y: waterbird
a: land
background

blond hair
male

8

+ entailment
has negation

(P) There was silence

for a moment.

(H) There was a short period
of time where no one spoke.

]

Figure 1: Representative training and test examples for the datasets we consider. The correlation
between the label y and the spurious attribute a at training time does not hold at test time.
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Stochastic Optimization

Input features z € X
Predicting labels: y € )

Training (z,y) are drawn from distribution P

The empirical distribution is
Empirical risk minimization (ERM):
fgrm ‘= arg min E )~ [0(0; (z,v))]

0co

Generalization error:

’E(ac,y)w [£(97 ({L‘, y))] - E(z,y)wp[g(e; (1’, y))” <e
perform well on average on unseen data.
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Distributionally Robust Optimization (DRO)

Minimize the worst-case expected loss over an uncertainty set of
distributions.

géiél { R(8) = supgeo E(m,y)wa(e; (z,9)] }

e ” € Q, ie., divergence ball around the training distribution.
e Small ball: a regularizer.

e Large ball: a pessimistic approach on how well you know the
true distribution.
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GI’OUp DRO (this paper)

Give some structure to the uncertainty sets using prior knowledge.

0= {quPg:q€5m}
g=1

i.e., a mixture of groups constructed based on spurious
correlations.

Minimize the worst-case loss over groups in the training data.

Opro = arggergin { 7’:’,(9) = I;leagx E(z,y)NPg [0(0; (z,v))] }
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How to Construct the Groups?

Make groups based on attributes that are spuriously correlated with the label.

Common training examples Test examples

y: waterbird y: landbird
a: water a: land ]
‘Waterbirds ground background (84

— :

y: blond hair wman y: dark hair <~ _Luveus y: blond hair
a: female a: male a: male
CelebA |
s

y: waterbird
a: land
background

Dataset:
e attributes: {male, female}, label: {blond, dark}
Groups
e Pi:{male, blond}, P>:{male, dark}, Ps:{female, blond}, Ps:{female,
dark}

‘ What spurious correlations the network learns in this case? ‘

‘ Between female and blond. ‘

So, the network do poorly on /;: {male, blond}.

Opro = arggergin {R(0) = Eppymr €005 (z,9))] }
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How Good is this Grouping Approach?

e What if the relation between input and label is not as clear/simple as
{gender attribute, hair color}?
Example 2.1. We want to automatically classify the quality of product reviews. Each review
has a number of “helpful” votes Y (from site users). We predict ¥ using the text of the

product review X. However, we find interventions on the sentiment Z of the text change
our prediction; changing “Great shoes!” to “Bad shoes!” changes the prediction.

e This grouping completely ignores the causal relationship between the
input and label.

e Should we consider a more general construction where the causal
relationships stay fixed, and the spurious dependencies change? (this is
the topic of the other paper we discuss today).
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Group DRO vs. ERM

Average Accuracy || Worst-Group Accuracy |
RM

DRO

Waterbirds

tandare

Early Stopping ~ Strong ¢, Penalty| Regularization

MultiNLI

Waterbirds

Waterbirds

CelebA
833

MultiNLI
71.7
ERM DRO ERM DRO
N Standard Regularization Standard Regularization Strong £ Penalty Strong £; Penalty
Training Time Training Time Training Time Training Time
—— Dark hair, female —— Dark hair, male  —— Blond, female —— Blond, male
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Overparameterized DRO

DRO traditionally is applied when the training loss does not go to zero.

In overparameterized regime, training loss vanishes.

e The network is optimal for both worst-case and average objectives.

e Good generalization on average, but bad generalization on worst-group.

Strong regularization to avoid vanishing training loss regime.

e (5 penalty
e Early stopping

e Group adjustments
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General Idea behind Regularization

Constrain the model family’s capacity to fit the training data.

Overparameterized network comes with implicit regularization.
e Norm regularizing of the weights through gradient descent.

e Good generalization on average, but not on worse-case.

Regularize so much to avoid vanishing training loss.
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{5 Penalty for Regularization
Method

£o-norm regularization or weight decay.

%réiél r;leag( E(zﬁy)wpg [€0; (z, y))] + All0]]2

An example for logistic regression for classification?.

Regularization A=0 A =0.00001 A=0.001 A=1

Range of

coefficients -3170 to 3803 -8.04t012.14 -0.70t0125 -0.13t0 0.57

Learned
probabilities

https://www.coursera.org/lecture/ml-classification /visualizing-effect-of-12-regularization-in-logistic-
regression-1VXLD

CS 282R Distributionally robust networks: Regularization for worst-case generalization

13 /26



{5 Penalty for Regularization

Results

Average Accuracy || Worst-Group Accuracy |
ERM DR(

CelebA

Standard

Early Stopping |Strong ¢, Penalty| Regularization

Waterbirds

CelebA

MultiNLI

Test 71.7
ERM DRO ERM DRO
, Standard Regularization _ _Stendard Regularization Strong £; Penalty Strong 1; Penalty
Training Time Training Time Training Time Training Time
= Dark hair, female = Dark hair, male = Blond, female = Blond, male

e ERM sacrifices worst-group training loss.
e DRO has no choice but to improve worst-group training loss.
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Early Stopping for Regularization

Intuition (I)
| |

‘ Implicit regularization of gradient descent. ‘

Consider the regularized least square problem:
R 1
s = argmin —[|Y — X0]|3 + |03
0

Optimal solution: X
O = (X"X + D) ' XY

0= (X'X)'XTY 0= (On)'XTY

low regularization high regularization
Solve through gradient descent:
b1 =60, — LXT(X0, - Y)
skipping a lot of details ... "
b~ (X" X)'XY  Gxy(n)'X"Y

large t small t
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Early Stopping for Regularization

Intuition (II)
SGD on Neural Networks Learns
Functions of Increasing Complexity
Preetum Nakkiran Gal Kaplun Dimitris Kalimeris Tristan Yang
Harvard University Harvard University Harvard University Harvard University
Benjamin L. Edelman Fred Zhang Boaz Barak
Harvard University Harvard University Harvard University
learning learning overfitting
simple complex
concepts concepts
(a) Tnitialization (b) Simple concept
SG0slaps
—— train performance
——— testperformance
— test performance attributable to simple classifier
(¢) Complex concept (d) Overfit
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Early Stopping for Regularization

Results

CS 282R

Standard
Regularization

Average Accuracy
DRO

|| Worst-Group Accuracy |
RM

Waterbirds

CelebA

MultiNLI

Waterbirds

Early Stopping |Strong ¢, Penalty

Waterbirds

CelebA

MultiNLI

Test
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Early Stopping for Regularization
Method

‘ How do we usua"y decide to Stop? (Ignore the double descent)

loss
—>

validation
loss

training
loss

* training epoch

early stopping

Conventional approach:

e Validation sets are constructed by randomly dividing the data.

This paper:
e Validation set has balanced groups.
e Robust validation accuracy is used.
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Group adjustments

General Idea

Problem:
e The generalization gap in some groups is larger.

Solution:
e “Focus’ more on groups with larger gap during training.
e Define generalization gap for each group.

39 = Eayymr, [000; (2,9))] = B, p [0 (2, 9))]

model capacity constant

C
OpRo-Adj = argergm max {E (g ), 1605 (2, 9)) 1+ = }
~
group size
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Group adjustments

Results

Waterbirds
CelebA

-
]

©  Accuracy

~

Training Time Training Time Training Time Tralning Time
—— Llandbird, land ~ —— Landbird, water ~—— Waterbird, land —— Waterbird, water
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Group adjustments

Discussion
model capacity constant
C
ObRo.Ad: == arg min max {E 5 10(0; (x
DRO-Ad; agee o { (x,y)wpg[ (0; (z,y))]+ - }
~—
group size

They ignore the possibility that one group might be harder
to generalize regardless of group size.

model capacity constant

. C
min max (B, ), (00 (2,9))1+ g }
~—
group size
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Importance Weighting

Used when train and test distributions differ.

Optimize for a test distribution with uniform group frequencies.

0, = aregergin E(l«,y,g)Nﬁg [wgf(a; (x,9))]]

where w, = I/Eg,wp[ﬂ(g' = g)].

This paper achieves this implicitly by sampling from each group with equal

probability.

Average Accuracy Worst-Group Accuracy

ERM W DRO ERM oW DRO
Waterbids 05.1 (0.3)] 935 (0.3)][63.7 (1.9)]88.0 (13)]914 (L1)

CelebA | 949 (0.2) | 929 (0.2)| 929 (02)|[478 (3.7)] 833 (2.8) | 889 (23)
MuliNLL | 82.8 (0.1) [ 812 (0.1)| 81.4 (0.1)|[ 664 (1.6)| 648 (1.6) | 77.7 14)
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Group DRO vs. Importance Weighting

Proposition 1

Group DRO - Importance Weighting

{oxéig E.~p[w(2)0(0;z)] is equivalent to g[éiél E.~q[l(6; 2)]

where Q(z) < w(z)P(z).

Proposition 1. Suppose that the loss £(-; z) is comtinuous and convex for all z in 2, and let the
uncertainty set O be a set of distributions supported on Z. Assume that Q and the model family
© C R4 are convex and compact, and let §* € © be a minimizer of the worst-group objective R(8).
Then there exists a distribution Q* € Q such that 6* € arg ming E. g+ [£(6; z)].

However, this equivalence breaks down when the loss £ is non-convex:
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Group DRO vs. Importance Weighting

Counterexample 1

Counterexample 1. Consider a uniform data distribution P supported on two points Z = {z, 22},
and let £(8; z) be as in Figure[d] with © = [0, 1). The DRO solution 6* achieves a worst-case loss of
R(8") = 0.6. Now consider any weights (w,,w,) € Ay and w.Lo.g. let wy > wo. The minimizer of
the weighted loss wy £(0; z1 ) +wol(#; z2) is 6, which only attains a worst-case loss of R(6*) = 1.0.

061 - - J-- - - -7

1(8;2,)

H8; z3)

8 8" 6;
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Group DRO vs. Importance Weighting

Proof sketch

Proposition 1. Suppose that the loss £(-; z) is continuous and convex for all = in 2, and let the
uncertainty set Q be a set of distributions supported on Z. Assume that Q and the model famity
O C R4 are convex and compact, and let §* € © be a minimizer of the worst-group objective R(8).
Then there exists a distribution ()* € Q such that 0* € arg min, E. .q- [£(8; 2)).

(DRO) elgg R(O) = elgé 5161% E.~q[4(0; )] is attained at 0" € ©

sup inf E.~q[¢(0; 2)] is attained at Q" € Q
Qe be®

(07,Q7) is a saddle point, i.e.,

sup Bzq[l(07; 2)] = Ezng+ [€(07; 2)] — inf Eznq-[£(0;2)]
Qe 0cO
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To achieve a robust and reliable machine learning algorithm, where

the model prediction does not depend on spurious correlations, we

may need to focus more on worst-case generalization rather than
average generalization.
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