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This presentation covers the following paper. I, Bahareh
Tolooshams, am only the presenter of this work (not author).

This is part of CS 282R course, where we discussed papers, at
Harvard University.
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Big Picture

Problem:

• Overparameterized networks can have high accuracy on
average on in-domain test data, but fail on atypical examples.

How to solve:

• Use distributionally robust optimization (DRO) to account for
worst-case training loss over certain groups.
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Spurious Correlations

One reason for failure:

• The network learns spurious correlations that hold on average
but not in certain examples.
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Stochastic Optimization

• Input features x ∈ X
• Predicting labels: y ∈ Y

• Training (x, y) are drawn from distribution P

• The empirical distribution is P̂

Empirical risk minimization (ERM):

θ̂ERM := argmin
θ∈Θ

E(x,y)∼P̂ [`(θ; (x, y))]

Generalization error:

|E(x,y)∼P̂ [`(θ; (x, y))]− E(x,y)∼P [`(θ; (x, y))]| ≤ ε

perform well on average on unseen data.
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Distributionally Robust Optimization (DRO)

Minimize the worst-case expected loss over an uncertainty set of
distributions.

min
θ∈Θ
{ R(θ) := supQ∈Q E(x,y)∼Q[`(θ; (x, y))] }

• P̂ ∈ Q, i.e., divergence ball around the training distribution.

• Small ball: a regularizer.

• Large ball: a pessimistic approach on how well you know the
true distribution.
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Group DRO (this paper)

Give some structure to the uncertainty sets using prior knowledge.

Q := {
m∑
g=1

qgPg : q ∈ δm }

i.e., a mixture of groups constructed based on spurious
correlations.

Minimize the worst-case loss over groups in the training data.

θ̂DRO := argmin
θ∈Θ

{ R̂(θ) := max
g∈G

E(x,y)∼P̂g [`(θ; (x, y))] }
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How to Construct the Groups?

Make groups based on attributes that are spuriously correlated with the label.

Dataset:

• attributes: {male, female}, label: {blond, dark}
Groups

• P1:{male, blond}, P2:{male, dark}, P3:{female, blond}, P4:{female,
dark}

What spurious correlations the network learns in this case?

Between female and blond.

So, the network do poorly on P1: {male, blond}.
θ̂DRO := arg min

θ∈Θ
{ R̂(θ) := E(x,y)∼P̂1

[`(θ; (x, y))] }
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How Good is this Grouping Approach?

• What if the relation between input and label is not as clear/simple as
{gender attribute, hair color}?

• This grouping completely ignores the causal relationship between the
input and label.

• Should we consider a more general construction where the causal
relationships stay fixed, and the spurious dependencies change? (this is
the topic of the other paper we discuss today).
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Group DRO vs. ERM

CS 282R Distributionally robust networks: Regularization for worst-case generalization 10 / 26



Overparameterized DRO

DRO traditionally is applied when the training loss does not go to zero.

In overparameterized regime, training loss vanishes.

What might be the problem here?

• The network is optimal for both worst-case and average objectives.

• Good generalization on average, but bad generalization on worst-group.

Strong regularization to avoid vanishing training loss regime.

• `2 penalty

• Early stopping

• Group adjustments
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General Idea behind Regularization

Constrain the model family’s capacity to fit the training data.

Overparameterized network comes with implicit regularization.

• Norm regularizing of the weights through gradient descent.

• Good generalization on average, but not on worse-case.

Regularize so much to avoid vanishing training loss.
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`2 Penalty for Regularization
Method

`2-norm regularization or weight decay.

min
θ∈Θ

max
g∈G

E(x,y)∼P̂g [`(θ; (x, y))] + λ‖θ‖2

An example for logistic regression for classification1.

1
https://www.coursera.org/lecture/ml-classification/visualizing-effect-of-l2-regularization-in-logistic-

regression-1VXLD
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`2 Penalty for Regularization
Results

• ERM sacrifices worst-group training loss.

• DRO has no choice but to improve worst-group training loss.

CS 282R Distributionally robust networks: Regularization for worst-case generalization 14 / 26



Early Stopping for Regularization
Intuition (I)

Why early stopping is a form of regularization?

Implicit regularization of gradient descent.

Consider the regularized least square problem:

θ̂λ = arg min
θ

1

n
‖Y −Xθ‖22 + λ‖θ‖22

Optimal solution:
θ̂λ = (XTX + λnI)−1XTY

θ̂λ ≈ (XTX)−1XTY︸ ︷︷ ︸
low regularization

θ̂λ ≈ (λn)−1XTY︸ ︷︷ ︸
high regularization

Solve through gradient descent:

θ̂t+1 = θ̂t −
γ

n
XT(Xθ̂t − Y )

skipping a lot of details ...

θ̂t ≈ (XTX)−1XTY︸ ︷︷ ︸
large t

θ̂t ≈ γ(n)−1XTY︸ ︷︷ ︸
small t
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Early Stopping for Regularization
Intuition (II)
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Early Stopping for Regularization
Results
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Early Stopping for Regularization
Method

How do we usually decide to stop? (Ignore the double descent)

Conventional approach:

• Validation sets are constructed by randomly dividing the data.

This paper:

• Validation set has balanced groups.

• Robust validation accuracy is used.
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Group adjustments
General Idea

Are we done? Can’t we do better?

Problem:

• The generalization gap in some groups is larger.

Solution:

• “Focus” more on groups with larger gap during training.

• Define generalization gap for each group.

δg = E(x,y)∼Pg [`(θ; (x, y))]− E(x,y)∼P̂g [`(θ; (x, y))]

θ̂DRO-Adj := argmin
θ∈Θ

max
g∈G
{E(x,y)∼P̂g [`(θ; (x, y))]+

model capacity constant︷︸︸︷
C√
ng︸︷︷︸

group size

}
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Group adjustments
Results
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Group adjustments
Discussion

What might be missing in this problem formulation?

θ̂DRO-Adj := argmin
θ∈Θ

max
g∈G
{E(x,y)∼P̂g [`(θ; (x, y))]+

model capacity constant︷︸︸︷
C√
ng︸︷︷︸

group size

}

They ignore the possibility that one group might be harder
to generalize regardless of group size.

min
θ∈Θ

max
g∈G
{E(x,y)∼P̂g [`(θ; (x, y))]+

group complexity︷︸︸︷
βg

model capacity constant︷︸︸︷
C√

ng︸︷︷︸
group size

}
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Importance Weighting

Used when train and test distributions differ.

Optimize for a test distribution with uniform group frequencies.

θ̂w := argmin
θ∈Θ

E(x,y,g)∼P̂g [wg`(θ; (x, y))]]

where wg = 1/Eg′∼P̂ [I(g′ = g)].

This paper achieves this implicitly by sampling from each group with equal

probability.
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Group DRO vs. Importance Weighting
Proposition 1

Group DRO
?
= Importance Weighting

min
θ∈Θ

Ez∼P [w(z)`(θ; z)] is equivalent to min
θ∈Θ

Ez∼Q[`(θ; z)]

where Q(z) ∝ w(z)P (z).
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Group DRO vs. Importance Weighting
Counterexample 1
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Group DRO vs. Importance Weighting
Proof sketch

(DRO) inf
θ∈Θ
R(θ) = inf

θ∈Θ
sup
Q∈Q

Ez∼Q[`(θ; z)] is attained at θ∗ ∈ Θ

sup
Q∈Q

inf
θ∈Θ

Ez∼Q[`(θ; z)] is attained at Q∗ ∈ Q

(θ∗, Q∗) is a saddle point, i.e.,

sup
Q∈Q

Ez∼Q[`(θ∗; z)] = Ez∼Q∗ [`(θ
∗; z)] = inf

θ∈Θ
Ez∼Q∗ [`(θ; z)]

CS 282R Distributionally robust networks: Regularization for worst-case generalization 25 / 26



To achieve a robust and reliable machine learning algorithm, where
the model prediction does not depend on spurious correlations, we
may need to focus more on worst-case generalization rather than

average generalization.
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