
Unfolding Neural Networks for Compressive
Multichannel Blind Deconvolution

Bahareh Tolooshams∗1, Satish Mulleti∗2, Demba Ba1, and
Yonina C. Eldar2

1Harvard University 2Weizmann Institute of Science ∗Equal contributions

IEEE ICASSP 2021

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 1 / 19



1 Motivation

2 Multichannel Blind Deconvolution

3 Learned Structured Compressive Multichannel Blind
Deconvolution (LS-MBD)

4 Results

5 Conclusion

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 2 / 19



Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 3 / 19



Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 3 / 19



Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 3 / 19



Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 3 / 19



Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 3 / 19



Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 3 / 19



Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 3 / 19



1 Motivation

2 Multichannel Blind Deconvolution

3 Learned Structured Compressive Multichannel Blind
Deconvolution (LS-MBD)

4 Results

5 Conclusion

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 4 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 5 / 19



Multichannel Blind Deconvolution (MBD)

Compressive sparse-MBD

Recover s and xn from compressive measurements zn = Φyn.

Solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Prior works:

• Pick Φ as a random matrix [1]:

• fast 3, not hardware-efficient 7

• Design a structured Φ [2]:

• slow 7, hardware-efficient 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 6 / 19



Multichannel Blind Deconvolution (MBD)

Compressive sparse-MBD

Recover s and xn from compressive measurements zn = Φyn.

Solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Prior works:

• Pick Φ as a random matrix [1]:

• fast 3, not hardware-efficient 7

• Design a structured Φ [2]:

• slow 7, hardware-efficient 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 6 / 19



Multichannel Blind Deconvolution (MBD)

Compressive sparse-MBD

Recover s and xn from compressive measurements zn = Φyn.

Solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Prior works:

• Pick Φ as a random matrix [1]:

• fast 3, not hardware-efficient 7

• Design a structured Φ [2]:

• slow 7, hardware-efficient 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 6 / 19



Multichannel Blind Deconvolution (MBD)

Compressive sparse-MBD

Recover s and xn from compressive measurements zn = Φyn.

Solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Prior works:

• Pick Φ as a random matrix [1]:

• fast 3, not hardware-efficient 7

• Design a structured Φ [2]:

• slow 7, hardware-efficient 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 6 / 19



Multichannel Blind Deconvolution (MBD)

Compressive sparse-MBD

Recover s and xn from compressive measurements zn = Φyn.

Solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Prior works:

• Pick Φ as a random matrix [1]:

• fast 3, not hardware-efficient 7

• Design a structured Φ [2]:

• slow 7, hardware-efficient 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 6 / 19



Our Contributions

Learned Structured compressive Multichannel Blind Deconvolution

• An unfolding neural network

• Fast and computational efficient 3

• Learned structured compression

• Hardware-efficient 3
• Superior performance against prior works 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 7 / 19



Our Contributions

Learned Structured compressive Multichannel Blind Deconvolution

• An unfolding neural network

• Fast and computational efficient 3

• Learned structured compression

• Hardware-efficient 3
• Superior performance against prior works 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 7 / 19



Our Contributions

Learned Structured compressive Multichannel Blind Deconvolution

• An unfolding neural network

• Fast and computational efficient 3

• Learned structured compression

• Hardware-efficient 3
• Superior performance against prior works 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 7 / 19



Our Contributions

Learned Structured compressive Multichannel Blind Deconvolution

• An unfolding neural network

• Fast and computational efficient 3

• Learned structured compression

• Hardware-efficient 3
• Superior performance against prior works 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 7 / 19



Our Contributions

Learned Structured compressive Multichannel Blind Deconvolution

• An unfolding neural network

• Fast and computational efficient 3

• Learned structured compression

• Hardware-efficient 3

• Superior performance against prior works 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 7 / 19



Our Contributions

Learned Structured compressive Multichannel Blind Deconvolution

• An unfolding neural network

• Fast and computational efficient 3

• Learned structured compression

• Hardware-efficient 3
• Superior performance against prior works 3

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 7 / 19



1 Motivation

2 Multichannel Blind Deconvolution

3 Learned Structured Compressive Multichannel Blind
Deconvolution (LS-MBD)

4 Results

5 Conclusion

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 8 / 19



LS-MBD
Compression operator

Compress through a convolution followed by a truncation.

z = bh ∗ yctrunc = Φy

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 9 / 19



LS-MBD
Compression operator

Compress through a convolution followed by a truncation.

z = bh ∗ yctrunc = Φy

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 9 / 19



LS-MBD
Compression operator

Compress through a convolution followed by a truncation.

z = bh ∗ yctrunc = Φy

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 9 / 19



LS-MBD
Compression operator

Compress through a convolution followed by a truncation.

z = bh ∗ yctrunc = Φy

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 9 / 19



LS-MBD
Compression operator

Compress through a convolution followed by a truncation.

z = bh ∗ yctrunc = Φy

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 9 / 19



LS-MBD
Compression operator

Compress through a convolution followed by a truncation.

z = bh ∗ yctrunc = Φy

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 9 / 19



LS-MBD
Network architecture

min
Φ,s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = ‖h‖2 = 1

Unfolding neural network:

• Encoder: proximal gradient descent to map compressed
measurements zn to target locations xn.

• Decoder: use the source Cs to reconstruct full measurements yn.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 10 / 19



LS-MBD
Network architecture

min
Φ,s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = ‖h‖2 = 1

Unfolding neural network:

• Encoder: proximal gradient descent to map compressed
measurements zn to target locations xn.

• Decoder: use the source Cs to reconstruct full measurements yn.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 10 / 19



LS-MBD
Network architecture

min
Φ,s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = ‖h‖2 = 1

Unfolding neural network:

• Encoder: proximal gradient descent to map compressed
measurements zn to target locations xn.

• Decoder: use the source Cs to reconstruct full measurements yn.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 10 / 19



LS-MBD
Network architecture

min
Φ,s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = ‖h‖2 = 1

Unfolding neural network:

• Encoder: proximal gradient descent to map compressed
measurements zn to target locations xn.

• Decoder: use the source Cs to reconstruct full measurements yn.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 10 / 19



LS-MBD
Network architecture

min
Φ,s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = ‖h‖2 = 1

Unfolding neural network:

• Encoder: proximal gradient descent to map compressed
measurements zn to target locations xn.

• Decoder: use the source Cs to reconstruct full measurements yn.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 10 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 11 / 19



Prior Works on Unfolding Networks

Solve sparse coding by iterative proximal gradient algorithm.

y ỹt CT
s

xt xT

Cs

ISTA [3]:
-

y We xt xT

S

LISTA [4]:

y ỹt We xt xT Cs

Wd

CRsAE [5]:
-

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 12 / 19



Prior Works on Unfolding Networks

Solve sparse coding by iterative proximal gradient algorithm.

y ỹt CT
s

xt xT

Cs

ISTA [3]:
-

y We xt xT

S

LISTA [4]:

y ỹt We xt xT Cs

Wd

CRsAE [5]:
-

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 12 / 19



Prior Works on Unfolding Networks

Solve sparse coding by iterative proximal gradient algorithm.

y ỹt CT
s

xt xT

Cs

ISTA [3]:
-

y We xt xT

S

LISTA [4]:

y ỹt We xt xT Cs

Wd

CRsAE [5]:
-

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 12 / 19



1 Motivation

2 Multichannel Blind Deconvolution

3 Learned Structured Compressive Multichannel Blind
Deconvolution (LS-MBD)

4 Results

5 Conclusion

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 13 / 19



Results
Recovery performance (I)

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 14 / 19



Results
Recovery performance (I)

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 14 / 19



Results
Recovery performance (I)

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 14 / 19



Results
Recovery performance (I)

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 14 / 19



Results
Recovery performance (I)

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 14 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Compression visualizations

CR = 23.74% CR = 25.25%

CR = 31.31% CR = 35.35%

CR = 40.4% CR = 50.0%

0 500 1000 1500 2000
Freq

0

2

4

6

D
FT

m
ag

ni
tu

de

s
h
z

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 16 / 19



1 Motivation

2 Multichannel Blind Deconvolution

3 Learned Structured Compressive Multichannel Blind
Deconvolution (LS-MBD)

4 Results

5 Conclusion

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 17 / 19



Conclusion

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 18 / 19



References

T. Chang, B. Tolooshams, and D. Ba, “Randnet: Deep learning with compressed measurements of images,”

in Proc. Workshop on Machine Learning for Signal Process. (MLSP), pp. 1–6, 2019.

S. Mulleti, K. Lee, and Y. C. Eldar, “Identifiability conditions for compressive multichannel blind

deconvolution,” IEEE Trans. Signal Process., vol. 68, pp. 4627–4642, 2020.

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint,” Communications on Pure and Applied Mathematics, vol. 57, no. 11,
pp. 1413–1457, 2004.

K. Gregor and Y. Lecun, “Learning fast approximations of sparse coding,” in International Conference on

Machine Learning, pp. 399–406, 2010.

B. Tolooshams, S. Dey, and D. Ba, “Deep residual autoencoders for expectation maximization-inspired

dictionary learning,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15, 2020.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 19 / 19


	Motivation
	Multichannel Blind Deconvolution
	Learned Structured Compressive Multichannel Blind Deconvolution (LS-MBD)
	Results
	Conclusion

