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Challenges: Receivers’ complexity increases with number of measurements.
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Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Transmit signal AN &

)
i

Received signal

Problem: Recover source (if unknown) and target locations.
Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.
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Sparse target locations (filters): x"
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Multichannel Blind Deconvolution (M8D) @
Sparse-MBD

Given n =1,..., N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): x"

Measurements: y" =sx*x" = C,x"
Goal: Recover s and x" from measurements y”.

One way to solve:

N
. 1
min  » ofly" = Cax"[3+ AIx"[1 st [lsfla =1
S,{Xn n=1 n=1
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Multichannel Blind Deconvolution (M8D) @
Sparse-MBD

Given n =1,..., N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): x"

Measurements: y" =sx*x" = C,x"
Goal: Recover s and x" from measurements y”.

One way to solve:

N
) 1
min > Sly" = Cx"[3+ X" st [ls]2=1
s, {xn}N_ “— 2
n=1n=1
Challenges:

e Requires access to full measurements y”.
e Computationally demanding.
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Compressive sparse-MBD

Recover s and x" from compressive measurements z" = ®y".

Solve:
N

: 1
min " 22"~ BCK3 + Ax"1 st [is2 =1
S:{xn}nzl TLZI
Prior works:
e Pick ® as a random matrix [1]:

e fast v/, not hardware-efficient X
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Multichannel Blind Deconvolution (M8D) @

Compressive sparse-MBD

Recover s and x" from compressive measurements z" = ®y".

Solve:
N

: 1
min " 22"~ BCK3 + Ax"1 st [is2 =1
S,{X"}nzl TLZI
Prior works:
e Pick ® as a random matrix [1]:

e fast v/, not hardware-efficient X
e Design a structured ® [2]:
e slow X, hardware-efficient v/
6/19

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD



Harvard John A. Paulson
School of Engineering
and Applied Sciences Zb 1o T

Our Contributions

WHZMANN INSTITUTE OF SCENCE

Learned Structured compressive Multichannel Blind Deconvolution

Available only
r Training

~ Stage 1 Loss

OSCRTY

of
OXCGRIY

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 7/19



O u r Cont ri b ution S EEr3 | Harvard John A, Paulson

and Applied Sciences

Learned Structured compressive Multichannel Blind Deconvolution

Available only
r Training

~ Stage 1 Loss

OSCRTY

of
OXCGRIY

e An unfolding neural network

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

School of Engineering Zjh R T

WHZMANN INSTITUTE OF SCENCE

719



O u r Cont ri b ution S EEr3 | Harvard John A, Paulson

and Applied Sciences

Learned Structured compressive Multichannel Blind Deconvolution

Available only
r Training

~ Stage 1 Loss

OSCRTY

of
OXCGRIY

e An unfolding neural network

e Fast and computational efficient v/

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

School of Engineering Zjh 1)

WHZMANN INSTITUTE OF SCENCE

719



O u r Cont ri b ution S EEr3 | Harvard John A, Paulson

and Applied Sciences

Learned Structured compressive Multichannel Blind Deconvolution

Available only
r Training

~ Stage 1 Loss

OSCRTY

of
OXCGRIY

e An unfolding neural network
e Fast and computational efficient v/

e Learned structured compression

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

School of Engineering Zjh 1)

WHZMANN INSTITUTE OF SCENCE

719



O u r Cont ri b ution S EEr3 | Harvard John A, Paulson

and Applied Sciences

Learned Structured compressive Multichannel Blind Deconvolution

Available only
for Training _

~ Stage 1 Loss

OSCRTY

of
OXCGRIY

e An unfolding neural network
e Fast and computational efficient v/
e Learned structured compression

e Hardware-efficient v/

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

School of Engineering Zjh 1)

WHZMANN INSTITUTE OF SCENCE

719



Harvard John A. Paulson
School of Engineering
and Applied Sciences Zjb 1087

Our Contributions

WHZMANN INSTITUTE OF SCENCE

Learned Structured compressive Multichannel Blind Deconvolution

Available only
r Training

-0

~~_Stage 2 Loss ~~ _Stage 1 Loss

O SR>

e An unfolding neural network
e Fast and computational efficient v/
e Learned structured compression

e Hardware-efficient v/
e Superior performance against prior works v/
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e Learned Structured Compressive Multichannel Blind
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Compression operator

Compress through a convolution followed by a truncation.

z = I.h * thrunc = i.y
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Unfolding neural network:
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Unfolding neural network:

e Encoder: proximal gradient descent to map compressed
measurements z™ to target locations x™.
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LS-MBD

Network architecture

N
. 1
min 37 5llz" ~ SO 3+ A1 st lsfl2 = [z =1
‘I’,S,{Xn}nzl n=1
Available only Encoder Decoder

.. for Training

O . .
~ S age 2 Loss ~ @lage 1 Loss
Unfolding neural network:

e Encoder: proximal gradient descent to map compressed
measurements z™ to target locations x™.

e Decoder: use the source C; to reconstruct full measurements y”.
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Stage 1:

e Train with full measurements to recover source Cg (i.e., set ® =1I).
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Stage 1:

e Train with full measurements to recover source Cg (i.e., set ® =1I).

e Forward pass: Estimate code & compute loss function ||y — y||3.
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Stage 1:

e Train with full measurements to recover source Cg (i.e., set ® =1).
e Forward pass: Estimate code & compute loss function ||y — y||3.

e Backward pass: Learn source C;.
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Stage 1:

e Train with full measurements to recover source Cg (i.e., set ® =1).
e Forward pass: Estimate code & compute loss function ||y — y||3.

e Backward pass: Learn source C;.

Stage 2:
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e Train with full measurements to recover source Cg (i.e., set ® =1).
e Forward pass: Estimate code & compute loss function ||y — y||3.

e Backward pass: Learn source Cs.

Stage 2:

e Take estimated codes X and source C; from stage 1.
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e Train with full measurements to recover source Cg (i.e., set ® =1).
e Forward pass: Estimate code & compute loss function ||y — y||3.

e Backward pass: Learn source Cs.

Stage 2:

e Take estimated codes X and source C; from stage 1.

e Forward pass: Estimate code & compute loss function ||x — %||3.
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e Train with full measurements to recover source Cg (i.e., set ® =1).
e Forward pass: Estimate code & compute loss function |ly — ¥|/3.
e Backward pass: Learn source Cs.

Stage 2:

e Take estimated codes X and source C; from stage 1.
e Forward pass: Estimate code & compute loss function ||x — %||3.

e Backward pass: Learn compression ®.
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Solve sparse coding by iterative proximal gradient algorithm.
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