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Motivation

A transmit source signal is reflected from sparsely located targets and measured
at the receiver.

Problem: Recover source (if unknown) and target locations.

Challenges: Receivers’ complexity increases with number of measurements.

Goal: Design a hardware-efficient and data-driven compression to enable

recovery from compressed measurements.
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Multichannel Blind Deconvolution (MBD)

Sparse-MBD

Given n = 1, . . . , N receiver channels,

Transmit signal (source): s

Sparse target locations (filters): xn

Measurements: yn = s ∗ xn = Csx
n

Goal: Recover s and xn from measurements yn.

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Challenges:

• Requires access to full measurements yn.

• Computationally demanding.
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Multichannel Blind Deconvolution (MBD)

Compressive sparse-MBD

Recover s and xn from compressive measurements zn = Φyn.

Solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1

Prior works:

• Pick Φ as a random matrix [1]:

• fast 3, not hardware-efficient 7

• Design a structured Φ [2]:

• slow 7, hardware-efficient 3
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Our Contributions

Learned Structured compressive Multichannel Blind Deconvolution

• An unfolding neural network

• Fast and computational efficient 3

• Learned structured compression

• Hardware-efficient 3
• Superior performance against prior works 3
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LS-MBD
Compression operator

Compress through a convolution followed by a truncation.

z = bh ∗ yctrunc = Φy

One way to solve:

min
s,{xn}Nn=1

N∑
n=1

1

2
‖yn −Csx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = 1
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LS-MBD
Network architecture

min
Φ,s,{xn}Nn=1

N∑
n=1

1

2
‖zn −ΦCsx

n‖22 + λ‖xn‖1 s.t. ‖s‖2 = ‖h‖2 = 1

Unfolding neural network:

• Encoder: proximal gradient descent to map compressed
measurements zn to target locations xn.

• Decoder: use the source Cs to reconstruct full measurements yn.
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LS-MBD
Training

Stage 1:

• Train with full measurements to recover source Cs (i.e., set Φ = I).

• Forward pass: Estimate code & compute loss function ‖y − ŷ‖22.

• Backward pass: Learn source Cs.

Stage 2:

• Take estimated codes x̃ and source Cs from stage 1.

• Forward pass: Estimate code & compute loss function ‖x̃− x̂‖22.

• Backward pass: Learn compression Φ.
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Prior Works on Unfolding Networks

Solve sparse coding by iterative proximal gradient algorithm.

y ỹt CT
s

xt xT

Cs

ISTA [3]:
-

y We xt xT

S

LISTA [4]:

y ỹt We xt xT Cs

Wd

CRsAE [5]:
-
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Recovery performance (I)
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Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Recovery performance (II)

• LS-MBD: Φ is learned and structured.

• LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).

• GS-MBD: Φ is random Gaussian and structured.

• FS-MBD: Φ is designed, fixed, and structured.

• G-MBD: Φ is random Gaussian matrix.

Sparse code recovery error

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD 15 / 19



Results
Compression visualizations
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