Unfolding Neural Networks for Compressive Multichannel Blind Deconvolution

Bahareh Tolooshams \ast1 , Satish Mulleti \ast2 , Demba Ba 1 , and Yonina C. Eldar 2

 1 Harvard University 2 Weizmann Institute of Science *Equal contributions

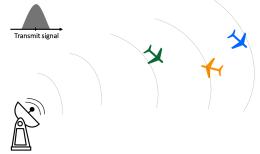
IEEE ICASSP 2021

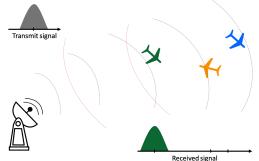
Harvard John A. Paulson School of Engineering and Applied Sciences

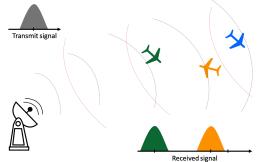
Harvard CRISP and Weizmann SAMPL

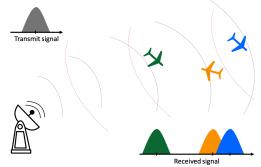
- 2 Multichannel Blind Deconvolution
- 3 Learned Structured Compressive Multichannel Blind Deconvolution (LS-MBD)

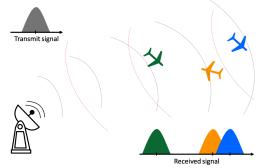
4 Results



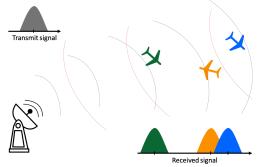






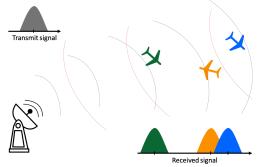


Problem: Recover source (if unknown) and target locations.



Problem: Recover source (if unknown) and target locations.

Challenges: Receivers' complexity increases with number of measurements.



- Problem: Recover source (if unknown) and target locations.
- Challenges: Receivers' complexity increases with number of measurements.
 - **Goal**: Design a *hardware-efficient* and *data-driven* compression to enable recovery from compressed measurements.

2 Multichannel Blind Deconvolution

3 Learned Structured Compressive Multichannel Blind Deconvolution (LS-MBD)

4 Results

Harvard John A. Paulsor School of Engineering and Applied Sciences

Given $n = 1, \ldots, N$ receiver channels,

Harvard John A. Paulson School of Engineering and Applied Sciences

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): \mathbf{S}

Harvard John A. Paulsor School of Engineering and Applied Sciences

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): s

Sparse target locations (filters): \mathbf{x}^n

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): \mathbf{S}

Sparse target locations (filters): \mathbf{x}^n

Measurements: $\mathbf{y}^n = \mathbf{s} * \mathbf{x}^n = \mathbf{C}_s \mathbf{x}^n$

Harvard John A. Paulsor School of Engineering and Applied Sciences

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): s

Sparse target locations (filters): \mathbf{x}^n

Measurements: $\mathbf{y}^n = \mathbf{s} * \mathbf{x}^n = \mathbf{C}_s \mathbf{x}^n$

Goal: Recover \mathbf{s} and \mathbf{x}^n from measurements \mathbf{y}^n .

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): s Sparse target locations (filters): \mathbf{x}^n Measurements: $\mathbf{y}^n = \mathbf{s} * \mathbf{x}^n = \mathbf{C}_s \mathbf{x}^n$

Goal: Recover s and \mathbf{x}^n from measurements \mathbf{y}^n .

One way to solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{y}^n - \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): s Sparse target locations (filters): \mathbf{x}^n Measurements: $\mathbf{v}^n = \mathbf{s} * \mathbf{x}^n = \mathbf{C}_s \mathbf{x}^n$

Goal: Recover \mathbf{s} and \mathbf{x}^n from measurements \mathbf{y}^n .

One way to solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{y}^n - \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Challenges:

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): s Sparse target locations (filters): \mathbf{x}^n Measurements: $\mathbf{v}^n = \mathbf{s} * \mathbf{x}^n = \mathbf{C}_s \mathbf{x}^n$

Goal: Recover \mathbf{s} and \mathbf{x}^n from measurements \mathbf{y}^n .

One way to solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{y}^n - \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Challenges:

• Requires access to full measurements \mathbf{y}^n .

Given $n = 1, \ldots, N$ receiver channels,

Transmit signal (source): s
Sparse target locations (filters):
$$\mathbf{x}^n$$

Measurements: $\mathbf{y}^n = \mathbf{s} * \mathbf{x}^n = \mathbf{C}_s \mathbf{x}^n$

Goal: Recover \mathbf{s} and \mathbf{x}^n from measurements \mathbf{y}^n .

One way to solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{y}^n - \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Challenges:

- Requires access to full measurements \mathbf{y}^n .
- Computationally demanding.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

Multichannel Blind Deconvolution (MBD)

Compressive sparse-MBD

Recover s and \mathbf{x}^n from *compressive* measurements $\mathbf{z}^n = \mathbf{\Phi} \mathbf{y}^n$.

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

Multichannel Blind Deconvolution (MBD) W Harvard John A. Paulsor School of Engineering and Applied Sciences (MBD) Compressive sparse-MBD

Recover s and \mathbf{x}^n from *compressive* measurements $\mathbf{z}^n = \mathbf{\Phi} \mathbf{y}^n$.

Solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{z}^n - \mathbf{\Phi} \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Multichannel Blind Deconvolution (MBD) W School of Engineering and Applied Sciences Compressive sparse-MBD

Recover s and \mathbf{x}^n from *compressive* measurements $\mathbf{z}^n = \mathbf{\Phi} \mathbf{y}^n$.

Solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{z}^n - \mathbf{\Phi} \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Prior works:

Multichannel Blind Deconvolution (MBD) W Harvard John A. Paulsor School of Engineering WTZ and Applied Sciences

Recover s and \mathbf{x}^n from *compressive* measurements $\mathbf{z}^n = \mathbf{\Phi} \mathbf{y}^n$.

Solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{z}^n - \mathbf{\Phi} \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Prior works:

- Pick Φ as a random matrix [1]:
 - fast ✓, not hardware-efficient X

Multichannel Blind Deconvolution (MBD) W Arvard John A. Paulsor School of Engineering Marvard John A. Paulsor School of Engineering Marvard John A. Paulsor

Recover s and \mathbf{x}^n from *compressive* measurements $\mathbf{z}^n = \mathbf{\Phi} \mathbf{y}^n$.

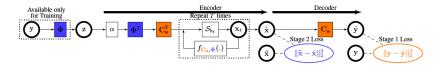
Solve:

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{z}^n - \mathbf{\Phi} \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

Prior works:

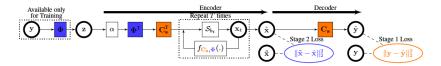
- Pick Φ as a random matrix [1]:
 - fast ✓, not hardware-efficient X
- Design a structured Φ [2]:
 - slow ✗, hardware-efficient ✔

Harvard John A. Paulsor אישר און אישט א ארעכטן ויציבען בערע אישט און א ארשערע און אישט און א



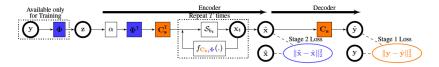
Harvard John A. Paulsor School of Engineering and Applied Sciences אינערע עבוע עניי אינערע אינערע

Learned Structured compressive Multichannel Blind Deconvolution

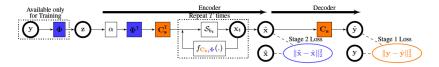


• An unfolding neural network

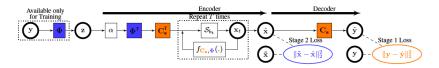
Harvard John A. Paulsor School of Engineering and Applied Sciences אינערע עבוע עניי אינערע אינערע



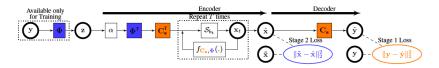
- An unfolding neural network



- An unfolding neural network
- Learned structured compression



- An unfolding neural network
- Learned structured compression
 - Hardware-efficient 🗸



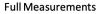
- An unfolding neural network
- Learned structured compression
 - Hardware-efficient 🗸
 - Superior performance against prior works \checkmark

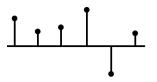
- 2 Multichannel Blind Deconvolution
- 3 Learned Structured Compressive Multichannel Blind Deconvolution (LS-MBD)

4 Results

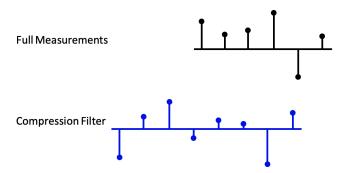
$$\mathbf{z} = \lfloor \mathbf{h} * \mathbf{y}
floor_{\mathsf{trunc}} = \mathbf{\Phi} \mathbf{y}$$

$$\mathbf{z} = \lfloor \mathbf{h} * \mathbf{y}
floor_{\mathsf{trunc}} = \mathbf{\Phi} \mathbf{y}$$

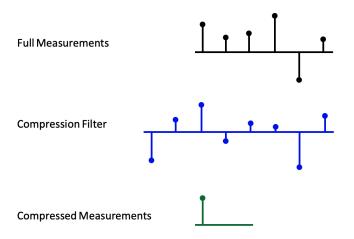




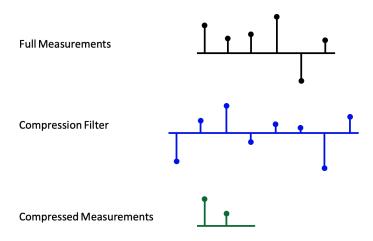
$$\mathbf{z} = \left\lfloor \mathbf{h} * \mathbf{y}
ight
floor_{\mathsf{trunc}} = \mathbf{\Phi} \mathbf{y}$$



$$\mathbf{z} = \left\lfloor \mathbf{h} * \mathbf{y}
ight
floor_{\mathsf{trunc}} = \mathbf{\Phi} \mathbf{y}$$



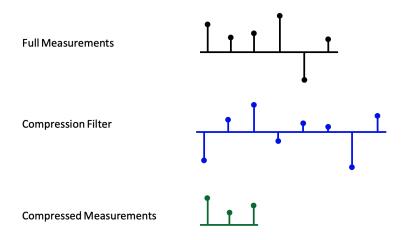
$$\mathbf{z} = \left\lfloor \mathbf{h} * \mathbf{y}
ight
floor_{\mathsf{trunc}} = \mathbf{\Phi} \mathbf{y}$$



Compression operator

Compress through a *convolution* followed by a *truncation*.

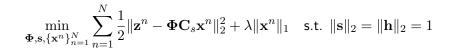
$$\mathbf{z} = \left\lfloor \mathbf{h} * \mathbf{y}
ight
floor_{\mathsf{trunc}} = \mathbf{\Phi} \mathbf{y}$$

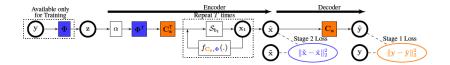


Network architecture

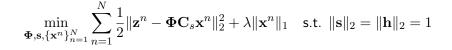
$$\min_{\mathbf{\Phi}, \mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{z}^n - \mathbf{\Phi} \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = \|\mathbf{h}\|_2 = 1$$

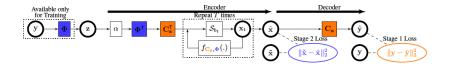
Network architecture





Network architecture

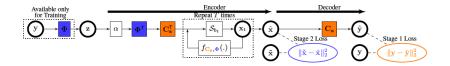




Unfolding neural network:

Network architecture

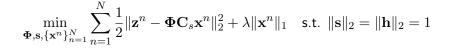


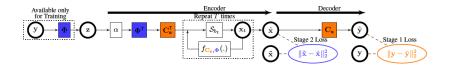


Unfolding neural network:

 Encoder: proximal gradient descent to map compressed measurements zⁿ to target locations xⁿ.

Network architecture





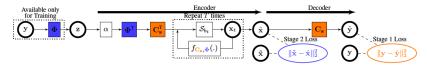
Unfolding neural network:

- Encoder: proximal gradient descent to map compressed measurements \mathbf{z}^n to target locations \mathbf{x}^n .
- Decoder: use the source C_s to reconstruct full measurements y^n .

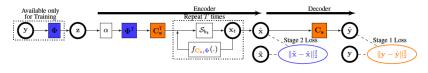
Available only for Training $(y) \rightarrow (w)$ $(z) \rightarrow (z) \rightarrow (z)$ $(z) \rightarrow (z) \rightarrow (z) \rightarrow (z)$ $(z) \rightarrow (z) \rightarrow (z)$

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

Training

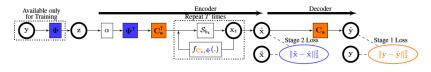


Stage 1:



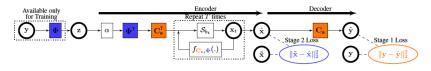
Stage 1:

• Train with full measurements to recover source C_s (i.e., set $\Phi = I$).



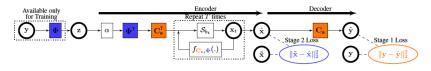
Stage 1:

- Train with full measurements to recover source C_s (i.e., set $\Phi = I$).
- Forward pass: Estimate code & compute loss function $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$.



Stage 1:

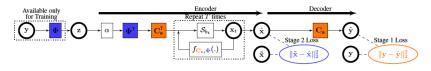
- Train with full measurements to recover source C_s (i.e., set $\Phi = I$).
- Forward pass: Estimate code & compute loss function $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$.
- Backward pass: Learn source C_s.



Stage 1:

- Train with full measurements to recover source C_s (i.e., set $\Phi = I$).
- Forward pass: Estimate code & compute loss function $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$.
- Backward pass: Learn source C_s.

Stage 2:

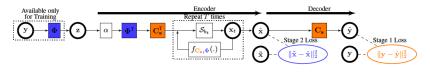


Stage 1:

- Train with full measurements to recover source C_s (i.e., set $\Phi = I$).
- Forward pass: Estimate code & compute loss function $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$.
- Backward pass: Learn source C_s.

Stage 2:

• Take estimated codes $\tilde{\mathbf{x}}$ and source \mathbf{C}_s from stage 1.

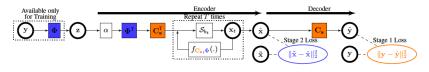


Stage 1:

- Train with full measurements to recover source C_s (i.e., set $\Phi = I$).
- Forward pass: Estimate code & compute loss function $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$.
- Backward pass: Learn source C_s.

Stage 2:

- Take estimated codes $\tilde{\mathbf{x}}$ and source \mathbf{C}_s from stage 1.
- Forward pass: Estimate code & compute loss function $\|\tilde{\mathbf{x}} \hat{\mathbf{x}}\|_2^2$.



Stage 1:

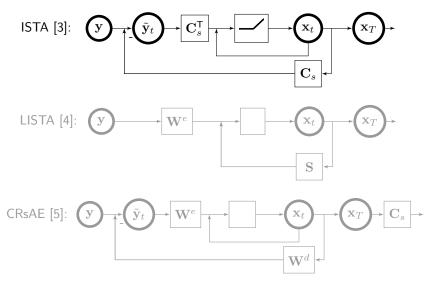
- Train with full measurements to recover source \mathbf{C}_s (i.e., set $\mathbf{\Phi} = \mathbf{I}$).
- Forward pass: Estimate code & compute loss function $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$.
- Backward pass: Learn source C_s.

Stage 2:

- Take estimated codes $\tilde{\mathbf{x}}$ and source \mathbf{C}_s from stage 1.
- Forward pass: Estimate code & compute loss function $\|\tilde{\mathbf{x}} \hat{\mathbf{x}}\|_2^2$.
- Backward pass: Learn compression Φ .

Prior Works on Unfolding Networks

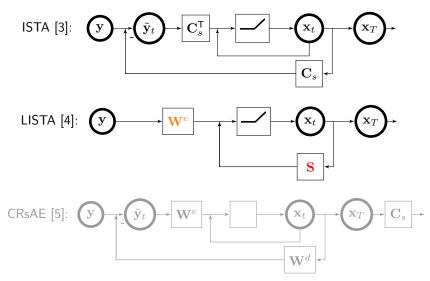
Solve sparse coding by iterative proximal gradient algorithm.



Harvard CRISP and Weizmann SAMPL

Prior Works on Unfolding Networks

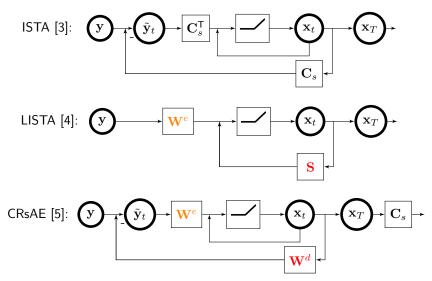
Solve sparse coding by iterative proximal gradient algorithm.



Harvard CRISP and Weizmann SAMPL

Prior Works on Unfolding Networks

Solve sparse coding by iterative proximal gradient algorithm.



Harvard CRISP and Weizmann SAMPL

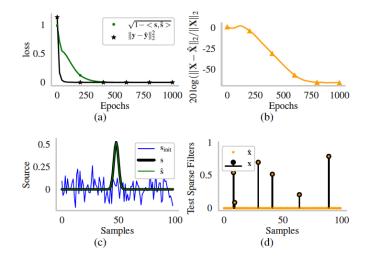
2 Multichannel Blind Deconvolution

3 Learned Structured Compressive Multichannel Blind Deconvolution (LS-MBD)

4 Results

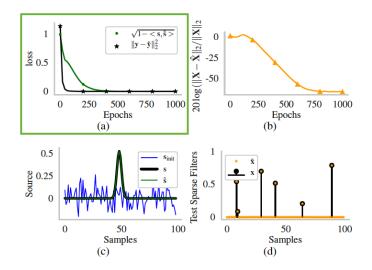
Harvard John A. Paulsor School of Engineering and Applied Sciences

Recovery performance (I)



Harvard John A. Paulson School of Engineering and Applied Sciences

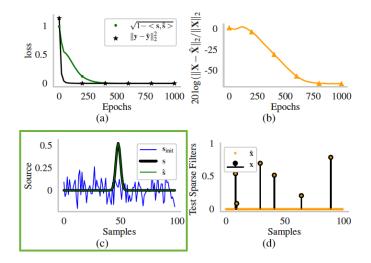
Recovery performance (I)



Harvard CRISP and Weizmann SAMPL

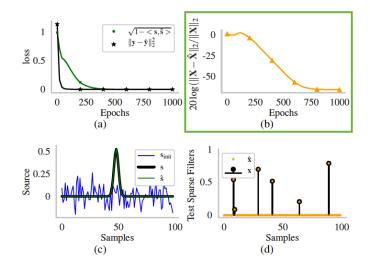
Harvard John A. Paulsor School of Engineering and Applied Sciences

Recovery performance (I)



Harvard John A. Paulson School of Engineering and Applied Sciences

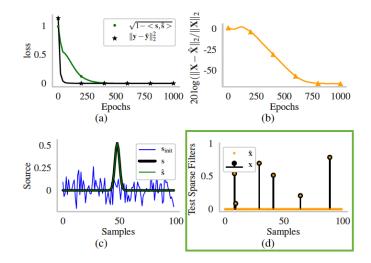
Recovery performance (I)



Harvard CRISP and Weizmann SAMPL

Harvard John A. Paulsor School of Engineering and Applied Sciences

Recovery performance (I)



Harvard CRISP and Weizmann SAMPL

Recovery performance (II)

- LS-MBD: Φ is learned and structured.
- LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).
- **GS-MBD**: Φ is random Gaussian and structured.
- **FS-MBD**: Φ is designed, fixed, and structured.
- **G-MBD**: Φ is random Gaussian matrix.

CR [%]	M_z	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
50	99	-54.05	-44.93	-43.96	-53.27	-26.54
40.4	80	-55.07	-40.55	-26.52	-52.80	-
35.35	70	-52.43	-40.00	-22.76	-51.50	-
31.31	62	-53.63	-37.13	-21.86	-54.71	-
25.25	50	-53.36	-28.57	-8.40	-51.41	-
23.74	47	-50.60	-26.11	-6.84	-50.35	-
22.72	45	-52.98	-23.17	-6.14	-43.61	-
20.20	40	-47.39	-14.75	-5.13	-17.07	-

Recovery performance (II)

- LS-MBD: Φ is learned and structured.
- LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).
- **GS-MBD**: Φ is random Gaussian and structured.
- **FS-MBD**: Φ is designed, fixed, and structured.
- **G-MBD**: Φ is random Gaussian matrix.

CR [%]	M_z	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
50	99	-54.05	-44.93	-43.96	-53.27	-26.54
40.4	80	-55.07	-40.55	-26.52	-52.80	-
35.35	70	-52.43	-40.00	-22.76	-51.50	-
31.31	62	-53.63	-37.13	-21.86	-54.71	-
25.25	50	-53.36	-28.57	-8.40	-51.41	-
23.74	47	-50.60	-26.11	-6.84	-50.35	-
22.72	45	-52.98	-23.17	-6.14	-43.61	-
20.20	40	-47.39	-14.75	-5.13	-17.07	-

Recovery performance (II)

- LS-MBD: Φ is learned and structured.
- LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).
- **GS-MBD**: Φ is random Gaussian and structured.
- **FS-MBD**: Φ is designed, fixed, and structured.
- **G-MBD**: Φ is random Gaussian matrix.

CR [%]	M_{z}	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
50	99	-54.05	-44.93	-43.96	-53.27	-26.54
40.4	80	-55.07	-40.55	-26.52	-52.80	-
35.35	70	-52.43	-40.00	-22.76	-51.50	-
31.31	62	-53.63	-37.13	-21.86	-54.71	-
25.25	50	-53.36	-28.57	-8.40	-51.41	-
23.74	47	-50.60	-26.11	-6.84	-50.35	-
22.72	45	-52.98	-23.17	-6.14	-43.61	-
20.20	40	-47.39	-14.75	-5.13	-17.07	-

Recovery performance (II)

- LS-MBD: Φ is learned and structured.
- LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).
- **GS-MBD**: Φ is random Gaussian and structured.
- **FS-MBD**: Φ is designed, fixed, and structured.
- **G-MBD**: Φ is random Gaussian matrix.

CR [%]	M_{z}	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
50	99	-54.05	-44.93	-43.96	-53.27	-26.54
40.4	80	-55.07	-40.55	-26.52	-52.80	-
35.35	70	-52.43	-40.00	-22.76	-51.50	-
31.31	62	-53.63	-37.13	-21.86	-54.71	-
25.25	50	-53.36	-28.57	-8.40	-51.41	-
23.74	47	-50.60	-26.11	-6.84	-50.35	-
22.72	45	-52.98	-23.17	-6.14	-43.61	-
20.20	40	-47.39	-14.75	-5.13	-17.07	-

Recovery performance (II)

-

- LS-MBD: Φ is learned and structured.
- LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).
- **GS-MBD**: Φ is random Gaussian and structured.
- **FS-MBD**: Φ is designed, fixed, and structured.
- **G-MBD**: Φ is random Gaussian matrix.

CR [%]	M_{z}	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
50	99	-54.05	-44.93	-43.96	-53.27	-26.54
40.4	80	-55.07	-40.55	-26.52	-52.80	-
35.35	70	-52.43	-40.00	-22.76	-51.50	-
31.31	62	-53.63	-37.13	-21.86	-54.71	-
25.25	50	-53.36	-28.57	-8.40	-51.41	-
23.74	47	-50.60	-26.11	-6.84	-50.35	-
22.72	45	-52.98	-23.17	-6.14	-43.61	-
20.20	40	-47.39	-14.75	-5.13	-17.07	-

Recovery performance (II)

- LS-MBD: Φ is learned and structured.
- LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).
- **GS-MBD**: Φ is random Gaussian and structured.
- **FS-MBD**: Φ is designed, fixed, and structured.
- **G-MBD**: Φ is random Gaussian matrix.

CR [%]	M_z	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
50	99	-54.05	-44.93	-43.96	-53.27	-26.54
40.4	80	-55.07	-40.55	-26.52	-52.80	-
35.35	70	-52.43	-40.00	-22.76	-51.50	-
31.31	62	-53.63	-37.13	-21.86	-54.71	-
25.25	50	-53.36	-28.57	-8.40	-51.41	-
23.74	47	-50.60	-26.11	-6.84	-50.35	-
22.72	45	-52.98	-23.17	-6.14	-43.61	-
20.20	40	-47.39	-14.75	-5.13	-17.07	-

Sparse code recovery error

Method \ Cost	Memory Storage	Complexity
Structured	$O(M_h)$	$O(M_h \log M_h)$
Unstructured	$O(\dot{M}_y \dot{M}_z)$	$O(M_y M_z)$

Harvard CRISP and Weizmann SAMPL Unfolding neural networks for compressive MBD

Recovery performance (II)

- LS-MBD: Φ is learned and structured.
- LS-MBD-L: Φ is learned and structured (relaxed network as in LISTA).
- **GS-MBD**: Φ is random Gaussian and structured.
- **FS-MBD**: Φ is designed, fixed, and structured.
- **G-MBD**: Φ is random Gaussian matrix.

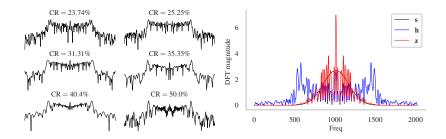
CR [%]	M_z	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
50	99	-54.05	-44.93	-43.96	-53.27	-26.54
40.4	80	-55.07	-40.55	-26.52	-52.80	-
35.35	70	-52.43	-40.00	-22.76	-51.50	-
31.31	62	-53.63	-37.13	-21.86	-54.71	-
25.25	50	-53.36	-28.57	-8.40	-51.41	-
23.74	47	-50.60	-26.11	-6.84	-50.35	-
22.72	45	-52.98	-23.17	-6.14	-43.61	-
20.20	40	-47.39	-14.75	-5.13	-17.07	-

Method \ Cost	Memory Storage	Complexity	Speed \ Method	G-MBD	FS-MBD	LS-MBD	LS-MBD-L
Structured	$O(M_h)$	$O(M_h \log M_h)$	runtime [s]	4.9087	164	5.4204	0.0028
Unstructured	$O(M_y M_z)$	$O(M_y M_z)$					

Harvard CRISP and Weizmann SAMPL

Harvard John A. Paulsor School of Engineering and Applied Sciences

Compression visualizations



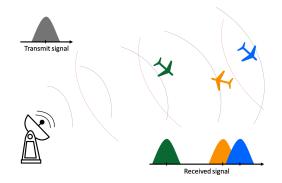
2 Multichannel Blind Deconvolution

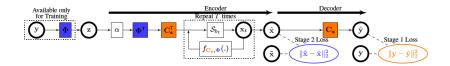
3 Learned Structured Compressive Multichannel Blind Deconvolution (LS-MBD)

4 Results

Conclusion

Harvard John A. Paulsor School of Engineering and Applied Sciences





Harvard CRISP and Weizmann SAMPL

References

T. Chang, B. Tolooshams, and D. Ba, "Randnet: Deep learning with compressed measurements of images," in *Proc. Workshop on Machine Learning for Signal Process. (MLSP)*, pp. 1–6, 2019.

S. Mulleti, K. Lee, and Y. C. Eldar, "Identifiability conditions for compressive multichannel blind deconvolution," *IEEE Trans. Signal Process.*, vol. 68, pp. 4627–4642, 2020.

I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," *Communications on Pure and Applied Mathematics*, vol. 57, no. 11, pp. 1413–1457, 2004.

K. Gregor and Y. Lecun, "Learning fast approximations of sparse coding," in *International Conference on Machine Learning*, pp. 399–406, 2010.

B. Tolooshams, S. Dey, and D. Ba, "Deep residual autoencoders for expectation maximization-inspired dictionary learning," *IEEE Trans. Neural Netw. Learn. Syst.*, pp. 1–15, 2020.