

**Problem**: Recover source (if unknown) and target locations.

**Challenges**: Receivers' complexity increases with number of measurements.

**Goal**: Design a *hardware-efficient* and *data-driven* compression to enable recovery from compressed measurements.

# Background

# **Sparse Multichannel Blind Deconvolution (MBD)**

Given n = 1, ..., N receiver channels,

Transmit signal (source):  $\mathbf{S}$ Sparse target locations (filters):  $\mathbf{x}^n$  $\mathbf{y}^n = \mathbf{s} * \mathbf{x}^n = \mathbf{C}_s \mathbf{x}^n$ Measurements:

**Goal**: Recover s and  $x^n$  from measurements  $y^n$ .

$$\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{y}^n - \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$$

**Challenges**: Requires *full* measurements. *Computationally* demanding and *slow*.

### **Compressive Sparse-MBD**

Recover s and  $x^n$  from *compressive* measurements  $z^n = \Phi y^n$ 

 $\min_{\mathbf{s}, \{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{z}^n - \mathbf{\Phi} \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_1 \quad \text{s.t. } \|\mathbf{s}\|_2 = 1$ 

# **Unfolding Neural Networks for Compressive Multichannel Blind Deconvolution** Bahareh Tolooshams<sup>\*1</sup>, Satish Mulleti<sup>\*2</sup>, Demba Ba<sup>1</sup>, and Yonina C. Eldar<sup>2</sup>



## **Compression Operator**

Compress through a *convolution* followed by a *truncation*.  $\mathbf{z} = [\mathbf{h} * \mathbf{y}]_{trunc} = \mathbf{\Phi}\mathbf{y}$ 

# **Unfolding Neural Network**

$$\min_{\Phi,\mathbf{s},\{\mathbf{x}^n\}_{n=1}^N} \sum_{n=1}^N \frac{1}{2} \|\mathbf{z}^n - \Phi \mathbf{C}_s \mathbf{x}^n\|_2^2 + \lambda \|\mathbf{x}^n\|_2^2$$

- **Encoder**: proximal gradient descent to map compressed measurements  $z^n$  to target locations  $x^n$ .
- **Decoder**: use the source to reconstruct full measurements.



|     | Method \ Cost | Memory Storage           |  |
|-----|---------------|--------------------------|--|
| = 1 | Structured    | $O(M_h)$                 |  |
|     | Unstructured  | $O(\dot{M}_y \dot{M}_z)$ |  |



- $\|\mathbf{h}\|_{1}$  s.t.  $\|\mathbf{s}\|_{2} = \|\mathbf{h}\|_{2} = 1$

# Results

### Stage 1:

- Backward pass: Estimate source.

## Stage 2:

- Backward pass: Learn compression.
- **LS-MBD (ours)**: Φ is learned and structured.
- **GS-MBD**:  $\Phi$  is random Gaussian and structured.
- **FS-MBD**:  $\Phi$  is designed, fixed, and structured.
- **G-MBD**:  $\Phi$  is random Gaussian matrix.

| CR [%]  | $M_{z}$ | G-MBD  | GS-MBD | FS-MBD | LS-MBD | LS-MBD-L |
|---------|---------|--------|--------|--------|--------|----------|
| 50      | 99      | -54.05 | -44.93 | -43.96 | -53.27 | -26.54   |
| 40.4    | 80      | -55.07 | -40.55 | -26.52 | -52.80 | -        |
| 35.35   | 70      | -52.43 | -40.00 | -22.76 | -51.50 | -        |
| 31.31   | 62      | -53.63 | -37.13 | -21.86 | -54.71 | -        |
| 25.25   | 50      | -53.36 | -28.57 | -8.40  | -51.41 | -        |
| 23.74   | 47      | -50.60 | -26.11 | -6.84  | -50.35 | -        |
| 22.72   | 45      | -52.98 | -23.17 | -6.14  | -43.61 | -        |
| 20.20   | 40      | -47.39 | -14.75 | -5.13  | -17.07 | -        |
| Speed \ | Met     | hod G- | MBD FS | -MBD L | S-MBD  | LS-MBD-L |
| runti   | me [s   | s] 4.9 | 9087   | 164    | 5.4204 | 0.0028   |
|         |         |        |        |        |        |          |

Train with full measurements to recover source. • Forward pass: Estimate code & compute loss function.

• Take estimated codes and source from stage 1. • Forward pass: Estimate code & compute loss function.

• **LS-MBD-L**:  $\Phi$  is learned and structured (relaxed as in LISTA).

Sparse code recovery error