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Summary One of the primary goals of neuroscience is to understand how features encoded in activity of
single neurons support computations at the population level and ultimately the behavior of organisms. The
ever-increasing amounts of neural data produced by new experimental techniques have led to the development
of new unsupervised dimensionality reduction methods. These methods have leveraged advances in deep
learning to build models that can capture the structure and dynamics of neural populations. Although these
models can describe neural activity in complex tasks, they are based on "black-box" approaches and usually do
not provide a link between neural activity and function. Here, we propose a novel method, Deconvolutional
Unrolled Neural Learning (DUNL), using algorithm unrolling, an emerging technique in interpretable deep
learning, to deconvolve single-trial neural activity into interpretable components. DUNL reframes dictionary
learning as optimizing weights in a deep neural network to obtain a direct interpretation of network weights as
parameters driving neural activity. DUNL can analyze single-trial neural data without the need for averaging
over trials or animals and is applicable to naturalistic tasks with little or no trial structure. Moreover, DUNL
is flexible with respect to the source signal, i.e., spike count data or on a proxy signal such as a fluorescent
calcium indicator. We apply DUNL to disentangle two overlapping signals in the reward prediction errors
of dopaminergic neurons in the midbrain: a first salience or surprise component and a second linked to the
intrinsic relative value of the reward. We apply DUNL to the unsupervised deconvolution of these multiplexed
signals and show that a) the learned parameters of DUNL can be attributed to salience and value, b) the inferred
latent representations are more informative of the reward amount than neural activity estimated using ad-hoc
windows and c) we can compare representations across recording modalities.

Fig. 1: Interpretable deep learning with deconvolutional unrolled neural learning (DUNL).

Additional Details For each neuron n, we impose a generative model on the neuron’s activity on a trial-by-
trial basis (i.e., the firing rate in the spiking setting) and model it as a function of a baseline activity an, j and a
set of localized kernels {hn

k}
K
k=1 characterizing the neuron’s response to events that occur sparsely in time. The

kernels capture characteristics that are shared among trials of a neuron or neural population. The events’ onsets
are modelled with a sparse code xn

k whose amplitude encodes the strength of the contribution of the k-th kernel
to the neuron’s response, i.e., µn, j = g(
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{yn, j}Jj=1 for each neuron n, we learn the kernels and codes by minimizing the negative log-likelihood with a
sparse and structural connectivity prior on the codes, i.e.,
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for k = 1, . . . ,K where λn
k controls the sparsity of the codes (i.e., frequency of onsets in time) and xn, j =

[xn, jT
1 ,xn, jT

2 , . . . ,xn, jT
K ]T for kernel k and neuron n. Moreover, Q is a symmetric matrix enforcing certain

neural connectivity within the latent representations (e.g., discouraging simultaneous activation of two kernels).
Based on algorithm unrolling [1, 2], we construct a deep neural architecture (Fig. 1) whose parameters
and latent have one-to-one mapping to the above-mentioned optimization model (1) [3]. We construct a
deep recurrent convolutional encoder based on proximal gradient descent to solve sparse coding in (1), i.e.,
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where S is shrinkage,

? denotes correlation, and en, j
k is a known-event indicator. This inference network maps single neuron single

trial observation yn, j, a vector in time, into an estimate of the sparse codes {xn, j
k }k=1, encoding event onsets

and their contribution to explain the data. The kernel is learned by training the network. For spiking data,
the spikes at each trial are binned at B ms resolution and are modeled using natural exponential family, i.e.,
yn, j ∼ Poisson(µn, j) and yn, j ∼ Binomial(B,µn, j), where µn, j models the mean of the distribution for neuron n
at trial j. For continuous data, yn, j ∈ RT is the raw measurement in time, modelled using Gaussian distribution.

Fig. 2: Deconvolution of reward prediction error from spiking data.
Spiking data We study 40 optogenetically identified dopaminergic neurons recorded in a classical condi-
tioning task [4]; in surprise trials, a size-varying reward (i.e., 0.1 to 20 µl) was delivered without cue, and in
expected trials, an odor cue preceded reward delivery by 1.5 s (Fig. 2a). Although the cue predicted the timing
of the reward, it provided no information about its magnitude. We characterized the response of dopaminergic
neurons to odor cue using one kernel/code (black) and model the reward response using two kernels/codes;
as shown, the inferred salience (blue) is invariant to the reward amount, but the value code (red) is strongly
modulated by reward amount (Fig. 2b) (noQ-regularization is used for code inference in this experiment) [5].
Given this decomposition, as an alternative to spike counts from ad-hoc windows, we use the code amplitudes
in single trials from the value kernel as a measure of the neurons’ tuning to reward amount. We compute the
Spearman rank correlation between reward amount and code amplitude or neural activity and show that the
value code is more informative of the reward amount than the spike count within the full 600 ms window (Fig.
2c left, each dot represents one neuron and the red marker the average across all neurons, p=2 · 10−6, t-test). In
addition, when we shrink the ad-hoc window to exclude the early activity attributed to salience, the value code
stays more informative than all possible window choices (Fig. 2c right). Finally, Fig. 2d highlights that the
inferred value code across dopaminergic neurons exhibit a diversity of tuning to reward amount (i.e., pessimistic
vs optimistic neurons), supporting distributional reinforcement learning in dopaminergic neurons [6].

Fig. 3: Deconvolution of reward prediction error from two-photon calcium signals.

Two-photon calcium imaging We study dopaminergic neurons whose activities are recorded by two-photon
imaging of GCaMP7f expressed in dopaminergic neurons in an adapted version of the task above; in surprise
trials, a size-varying reward (i.e., 0.3 to 11 µl) was delivered without cue, and in expected trials, an odor cue
preceded reward delivery by 3 s (Fig. 3a-b). We characterized (Fig. 3c) the neural responses to odor cue by one
kernel/code (black), and the responses at the reward onset in both surprise and expected trials are modeled by
three kernels; blue kernel resembles salience, and the other two kernels (green and red), which are discouraged
to be active at the same time throughQ-regularization, model the value. Green and red value kernels can only
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take negative and positive code, respectively; this is motivated by the calcium dynamics whose response to
pauses in neural activity is slower to responses to increases in neural activity. Similar to the conclusions from
spiking data, the inferred value code is highly correlated with the reward amount (Fig. 3c, bottom row) and it
is more informative of reward amount than the ad-hoc windowing method (Fig. 3d with p = 4 · 10−8, t-test).
Again, we observed a diversity of sensitivity to reward in the value code across neurons (Fig. 3e).
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