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Summary
• We deconvolve single-trial activity into interpretable components using algorithm unrolling [1].

• Reward prediction error responses of dopamine neurons are modulated by two components, salience and value [2].
• We deconvolve the two factors in an unsupervised manner and attribute a kernel and a code to each factor.
• We show that the inferred codes are more informative than firing rates estimated using ad-hoc windows. 

Model Characterization

Model firing rates at trial j with 𝐾 kernels characterizing neurons’ responses to time-sensitive sparse events [3].

Generative Model:        𝛍𝐣 = 𝐠( ∑𝒌#𝟏𝑲 𝐡𝐤 ∗ 𝐱𝐣,𝐤 + a𝐣 )

Observations:              𝐲𝐣|{𝐡𝐤, 𝐱𝐣,𝐤}𝐤#𝟏𝐊 ∼ Binomial or Gaussian with mean 𝛍𝐣

Optimization:   min
𝐡𝐤 𝐤"𝟏

𝐊 , 𝐱𝐣,𝒌 𝐣,𝐤"𝟏
𝐉,𝑲

∑𝐣%𝟏
𝐉 − logP 𝐲𝐣 {𝐡𝐤, 𝐱𝐣,𝐤}𝐤%𝟏𝐊 ) + ∑𝒌"𝟏𝑲 𝝀 𝐱𝐣,𝐤 𝟏 s. t. 𝐡𝐤 𝟐 = 𝟏

baseline
activity

dictionary
(kernels)

events and strength
of response

firing rate

Methods

We acknowledge Sara Matias3 for the feedback and collection of valuable data which we are currently processing for extension of this project.

from [2].

from [2].

We study 40 optogenetically identified dopaminergic neurons recorded in a classical conditioning task [4].
a) Surprise trials: a reward was delivered without cue. Expected trials: an odor cue preceded reward delivery.
b) (top) Kernels: characterizing the neural response. (bottom) Codes: a measure of neurons’ tuning to reward amount.
c) Value codes carry more information about reward amount than the firing rates over ad-hoc windows. 
d) Value codes across the neural population show a diverse sensitivity to reward size.
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