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Summary: The majority of approaches for studying neuronal activity use an experimental setup
where a stimulus is repeatedly applied over a series of trials with time-locked and non-overlapping
events. Then, the spike trains are averaged over trials and smoothed out. These approaches fail in
naturalistic environments and experiments in which the stimulus comprises discrete events occurring
at random times, which may elicit overlapping responses. To analyze neuronal activity patterns in
such experiments, we utilize a model of the spiking rate of a neuron as the convolution of an unknown
impulse response and a sparse code, representing the time when the stimulus elicits an activity pattern
in the neurons response, and the response’s amplitude. We fit the model to single-unit spiking data by
solving a Poisson dictionary learning problem that lets us estimate a neurons impulse response, and
the amplitude of the response to each stimulus, directly from the spiking data. To solve the problem,
we construct an autoencoder. We used neural spiking data acquired from piriform cortex in response
to odor pulses to estimate the impulse responses (dictionary) of ∼200 neurons along with the strength
of the response associated with each pulse for each neuron (sparse code). The Kolmogorov-Smirnov
(KS) test shows that the model fits the data well. Our analysis shows that, at the level of a single neu-
ron, the odor pulses evoke different responses, likely reflecting differences in alignments to the breathing
phase. In addition, we found that neurons from the population cluster according to either the estimated
impulse responses or the stimulus responses, suggesting the presence of distinct neural populations in
piriform cortex that could have distinct roles in the processing of information in olfactory search.

Experimental setup. An experimental session consists of ∼250 trials. In each trial, a custom device
delivered 50 ms odor pulses (red dots in Fig. 2(a)) of the same peak concentration to the animal’s nose
at a Poisson-distributed pulse rate between 0.5-4 pulse/s for 5 s. Neural activity in the animal’s ante-
rior piriform cortex was recorded with a custom-built 32-channel tetrode drive at a 30 kHz sampling
rate using the Open Ephys recording system [1]. Single-unit spiking activities (black dots in Fig. 2(a))
were isolated using Kilosort2 [2]. We isolated 5-40 single units in each recording session. At the end
of each session, the entire bundle of tetrodes was lowered by 40 µm to obtain a new set of neurons
for the subsequent session. We recorded C = 388 neurons during S = 17 behavioral sessions. We ex-
cluded neurons with very low and high firing rate and used C = 221 neurons for the subsequent analysis.

Methods. We downsampled the data to a resolution of 1 ms. Let sj,c ∈ {0, 1}4500 be the vector of
spikes from neuron c in trial j from 0.5 to 5 s. We conducted our analysis using 50 ms bins. We denote
the odor indicator by oj ∈ {0, 1}100. We model the spike counts yj,c ∈ RN=90 as a Poisson process
(i.e., yj,c ∼ Poisson(µµµj,c)). Let hc ∈ R20 be a 1 s long dictionary element (impulse response) that
characterizes the activity of neuron c, and xj,c a sparse vector whose non-zero entries and amplitudes
indicate the presence of an odor pulse and modulate the strength of neural response, respectively. We
model the spiking rate as µµµj,c = exp (hc ∗ xj,c + aj,c) where aj,c determines the baseline activity of
neuron c which we heuristically estimate from the trials. The sparsity of the occurrences of odor pulses
motivates us to enforce sparsity on xj,c using the `1 norm. Our goal is to learn an impulse response hc

(a convolutional dictionary with one filter) for each neuron by minimizing the negative log-likelihood
−
∑J

j=1 logP (yj,c | hc,x
j,c). We optimize the following objective

min
hc,{xj,c}Jj=1

J∑
j=1

−(hc ∗ xj,c + aj,c)Tyj,c + 1Nehc∗x
j,c+aj,c + λ‖xj,c‖1 s.t. ‖hc‖2 = 1, xj,c ≥ 0. (1)
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Figure 1: DCEA architecture.

This problem can be solved by alternating between sparse cod-
ing (i.e., solving for xj,c given an estimate of the dictionary),
and a dictionary update step (i.e., learn a better hc given the
estimated codes). Recent work [3] has shown a one-to-one cor-
respondence between (1) and deep convolutional exponential-
family autoencoder (DCEA), shown in Fig. 1. The encoder
performs sparse coding (i.e., estimates the odor onsets and the
amplitude of response), and the decoder reconstructs the rate

µµµj,c using hc, which is learned by backpropagation. In our results below, we use the knowledge of the
support for the code (i.e., timing of the pulses is known). Hence, the encoder unfolds T iterations of

proximal gradient descent on the objective which is xj,c
t = oj ·ReLU λ

L

(
xj,c
t−1 + 1

L
hc ? (yj,c − ehc∗x

j,c+aj,c)
)

where ? is correlation operator. The amplitudes of non-zero elements in xj,c
T determine the strength of

neural response to the stimulus. We leave the case of unknown support for future work. We initialize
hc using the peristimulus time histogram (PSTH) of the aligned raster (Fig. 2(d)) which is shown in
(Fig. 2(c)) in black.

(a) (b) (c)

(d) (e) (f)
Figure 2: One neuron. (a) Odors (red) and spikes (black). (b) Spike counts
(black) and estimated rate (orange) for a trial. (c) PSTH of aligned raster
(black) and the dictionary (green). (d) Aligned raster given odor onsets.
(e) Odor events (red) and the code (black) for a trial. (f) goodness-of-fit
(dotted lines shows 95% confidence interval).

Results. Fig. 2 shows the data and
results for one neuron. Given hc

(Fig. 2(c) green), Fig. 2(b) shows
spike counts yj,c of one trial (black)
and the estimated rate µµµj,c (orange).
Fig. 2(e) shows the odor onsets (red)
and the estimated code (black) from
a single trial. This figure shows that
the neuron does not respond to all
pulses with the same strength. For
instance, the pulses around 4 s do not
evoke a response. We may attribute
this to the effect of spiking history or
position of these pulses with respect
to the animal’s breathing cycle. The
KS plot from Fig. 2(f) demonstrates
that the model fits the data well. Be-
low, we categorize the neurons into groups based on their impulse responses or sparse codes.

(a) (b)
Figure 3: Dictionary (a) clusters and (b) similarity.

After learning impulse responses for all
neurons, we standardized them (i.e.,
zero mean and norm one) and used
spectral clustering to obtain three clus-
ters. Fig. 3(a) visualizes the impulse
responses for each cluster in a differ-
ent color, where their representatives
(mean) are shown in black. We observed
mainly three types of responses: (i) one
that starts to silence the neuron reach-

ing minimal activity ∼300 ms after the odor release and then returns to baseline (blue cluster) (ii)
another that results in an undershoot within ∼200 ms of an odor, followed by an increase in activity
which decays after ∼500 ms (orange cluster), and (iii) finally one that shows a sharp increase in spiking
activity and a decay after ∼300 ms (green cluster). Fig. 3(b) shows the cosine similarity of impulse
responses; neurons within the identified clusters (inside the colored boxes) have high similarities, and
neurons across clusters have a low similarity. Overall, the largest portion of the neurons come from the
green cluster excited by the odor pulses. The smallest size cluster corresponds to neurons inhibited by
the stimulus.
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(a) (b)
Figure 4: HBP (a) clusters and (b) similarity.

For each neuron, we extract sparse
codes, xj,c

T , restricted to the support of
odor pulses {oj}221j=1 from all trials. As
the odor timing is different from one
experiment session to another, we can-
not compare the neurons across sessions
given this vector. To enable compari-
son, we relate the code to the animal’s
breathing phase and construct a normal-

ized weighted histogram of the breathing phase (HBP) from 0 to 2π using the code amplitudes. Given
the standardized HBP, we then perform spectral clustering on HBP for the population of neurons from
all experiment sessions. Fig. 4(a) presents the three clusters identified using HBP and Fig. 4(b) show its
corresponding similarity matrix. These data show that different neurons are modulated by breathing
phase in different ways, with one activation pattern (blue) dominating.
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