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Benefits of our approach:
- Unsupervised approach for discovering optimal covariates 

for explaining the data
- Accurate identification of the time occurrence

Future work:
- Validation with more behavioral datasets
- Add additional relaxations (onset delays across neurons) 

and constraints (learned covariates are smooth)
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The recording of neural activity in response to repeated presentations 
of an external stimulus is an established experimental paradigm in 
neuroscience. GLMs are commonly used to describe how neurons 
encode external stimuli, by statistically characterizing the relationship 
between the covariates and neural activity. The question becomes: 
How do we choose appropriate covariates? 

1. 𝒍𝟎 pseudo-norm: 𝑿𝒄 𝟎 (BCOMP)

Different sparsity constraints → Different CSC algorithms

Notations
𝒚௝,௠ ∈ 0,1 ே: Spike time-series for Neuron 𝑗 and trial 𝑚
𝒉௖ ∈ ℝ𝑲: Template from source 𝑐
𝑿௖

௝
∈ ℝேି௄ାଵ : Code vector for neuron 𝑗 and source 𝑐

𝑎௝: Baseline firing rate for neuron 𝑗

Optimization objective

We cast the problem of learning the covariates from the data as a 
Convolutional Dictionary Learning (CDL) problem, where the goal is 
to learn 1) shift-invariant templates from multiple sources and 2) the 
times when they occur. Our approach is data-driven and thus 
unsupervised.

Our contributions are
• Formulate optimization objective with sparsity constraints, also 
accounting for binary nature of spikes
• Propose iterative algorithms to solve the objective, with the key 
insight that observations need to be iteratively modified

2. 𝒍𝟏 norm: 𝑿𝒄 𝟏 (DCEA)
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Approach
- We use alternating minimization (or block coordinate descent) to solve for
𝒉௖ ௖ and 𝑿௖

௝

௖,௝
, in an alternative manner.

- To account for binary-nature of the data, we iteratively modify 𝒚௝,௠

Modified observations

Two algorithms
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𝒚෥௧
௝,௠ - The modification is inspired by the Iterative Reweighted Least 

Squares algorithm for GLM

CSC: Extension of Kernel greedy pursuit to convolutional setting
CDU: Convolutional K-SVD

CSC
- Proximal gradient update (Guaranteed convergence)
- Map 𝑇 iterations of proximal update steps to 𝑇 layer 

recurrent neural network (efficiency + scalability)
CDU
- Backpropagation through the entire network

An example of neural spikes and the rate (truth) with 𝑎௝ = −1.5

Preprint

Random initialization for 3 templates (Blue), true templates (Orange),
and learned templates aŌer training (Green) → CDL success

Iteratively modifying observations is important
- Solid with modification
- Dashed without modification (Gaussian)

→ AccounƟng for binary nature of the data is 
crucial for learning the true templates

Experiment
- A whisker is repeatedly (16 times) stimulated with the same stimulus by piezo-electrode, 

inducing responses in Barrel cortex neurons.

Preliminary results
- Previous GLM analysis requires hand-crafted or parametric 

function derived from the stimulus
- The learned templates (orange, green) have multiple peaks 

and different from the ideal whisker velocity (blue)
- The goodness-of-fit via KS plot shows that the learned 

templates explain the data better (closer to 45-degree line)

- For the test data, our framework accurately identifies the 
onset times (red) of 16 stimuli.


