

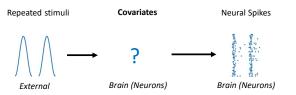
Convolutional Dictionary Learning of Stimulus from Spiking Data VE RU EAS

Andrew Song^{1*}, Bahareh Tolooshams^{2*}, Simona Temereanca³, Demba Ba²

(1): Dept. of Electrical Engin. & Computer Sci., MIT, Cambridge, MA; (2): School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; (3): Brown University, Providence, RI; (*): Equal Contributions

PROBLEM STATEMENT

The recording of neural activity in response to repeated presentations of an external stimulus is an established experimental paradigm in neuroscience. GLMs are commonly used to describe how neurons encode external stimuli, by statistically characterizing the relationship between the covariates and neural activity. The guestion becomes: How do we choose appropriate covariates?



We cast the problem of learning the covariates from the data as a Convolutional Dictionary Learning (CDL) problem, where the goal is to learn 1) shift-invariant templates from multiple sources and 2) the times when they occur. Our approach is *data-driven* and thus unsupervised.

Our contributions are

• Formulate optimization objective with *sparsity constraints*, also accounting for binary nature of spikes

• Propose iterative algorithms to solve the objective, with the key insight that observations need to be iteratively modified

GENERATIVE MODEL

Notations

 $y^{j,m} \in \{0,1\}^N$: Spike time-series for Neuron j and trial m

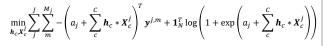
 $\boldsymbol{h}_{c} \in \mathbb{R}^{K}$: Template from source c

- $X_{c}^{j} \in \mathbb{R}^{N-K+1}$: Code vector for neuron *j* and source *c*
- a_i : Baseline firing rate for neuron *j*

Generative Model

 $y^{j} \sim Binomial(M_{i}, \mu_{i})$, where $\mu_{i} = a_{i} + \sum_{c}^{C} h_{c} * X_{c}^{j}$

Optimization objective



Such that $X_c^j \ge 0$ and X_c^j is sparse

Approach

- We use alternating minimization (or block coordinate descent) to solve for $\{\boldsymbol{h}_{c}\}_{c}$ and $\{\boldsymbol{X}_{c}^{j}\}$, in an alternative manner.

- To account for **binary-nature** of the data, we *iteratively modify* $\mathbf{v}^{j,m}$

ALGORITHMS

Different sparsity constraints → Different CSC algorithms

Alternating Minimization Modified observations

Repeat

T times $\widetilde{\boldsymbol{v}}_{\star}^{j,m}$

Convolutional

Sparse Coding

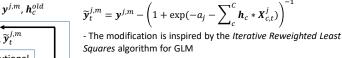
(CSC)

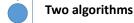
 X_{cT}^{j}

Convolutional

Dictionary **U**pdate

 X_{ct}^{j}





1. l_0 pseudo-norm: $||X_c||_0$ (BCOMP)

CSC: Extension of Kernel greedy pursuit to convolutional setting CDU: Convolutional K-SVD

2. l_1 norm: $||X_c||_1$ (DCEA)

CSC - Proximal gradient update (Guaranteed convergence) - Map T iterations of proximal update steps to T layer recurrent neural network (efficiency + scalability)

function derived from the stimulus

onset times (red) of 16 stimuli.

The *learned templates* (orange, green) have multiple peaks and different from the *ideal whisker velocity* (blue)

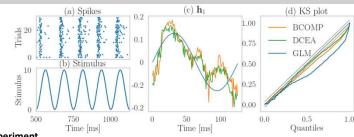
templates explain the data better (closer to 45-degree line)

For the test data, our framework accurately identifies the

The goodness-of-fit via KS plot shows that the learned

- Backpropagation through the entire network

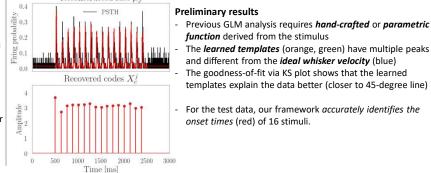
REAL DATA – BARREL CORTEX

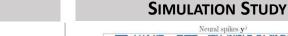


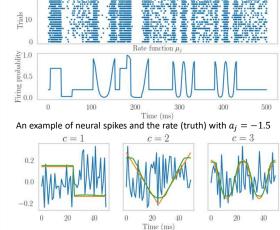
Experiment

- A whisker is repeatedly (16 times) stimulated with the same stimulus by piezo-electrode, inducing responses in Barrel cortex neurons.

Reconstructed rate μ_i







Random initialization for 3 templates (Blue), true templates (Orange), and learned templates after training (Green) \rightarrow CDL success $\operatorname{err}(\mathbf{h}_c, \widehat{\mathbf{h}}_c)$

> Iteratively modifying observations is important - Solid with modification

Dashed without modification (Gaussian)

 \rightarrow Accounting for binary nature of the data is crucial for learning the true templates

DISCUSSION & FUTURE WORK

Benefits of our approach:

- Unsupervised approach for discovering optimal covariates for explaining the data
- Accurate identification of the time occurrence

Future work:

0.5

0.4

0.3

0.2

0.1

- Validation with more behavioral datasets
- Add additional relaxations (onset delays across neurons) and constraints (learned covariates are smooth)

References and Related Work:

[1] Garcia-Cardona C., IEEE TCI, 2018 [2] Mackevicius E.L et. al., eLIFE, 2019 [3] Temereanca S., J. Neuroscience, 2008

Funding Sources:

- Samsung scholarship
- · Quantitative Biology Initiative at Harvard University

Preprint

 h_c^{new} CDU

(CDU)

🔵 : Non-linearitv